Welcome to Gaia! ::

( guildy)╬[The Empire of Gaia]╬

Back to Guilds

█▓░ FREE GOLDS GIVING ░▓█ Win Million of Gold & Cash 

Tags: Linkin Park,Twilight, Free Golds,Friends Girls boys,Love,Games, Avatars,Items,Shop,Market,Music,Sport, Poll,Bump,Guildy,Naruto, Zomg,Art,Writing,Arena 

Reply [6]~ Free Give ~
1k for first person to every page Goto Page: [] [<<] [<] 1 2 3 ... 21 22 23 24 25 26 ... 44 45 46 47 [>] [>>] [»|]

Quick Reply

Enter both words below, separated by a space:

Can't read the text? Click here

Submit

Angel982

Desirable Sex Symbol

5,450 Points
  • Forum Sophomore 300
  • First step to fame 200
  • Contributor 150
PostPosted: Thu Nov 26, 2009 1:43 pm
BuMp emo  
PostPosted: Fri Nov 27, 2009 10:22 pm
dude, what r u talking about? u sound like a grown up. stare  

blackdawn0


l-Alpine-Aphrodisiac-l

Romantic Lunatic

8,850 Points
  • Citizen 200
  • Forum Sophomore 300
PostPosted: Mon May 24, 2010 5:26 pm
bump  
PostPosted: Tue May 25, 2010 4:19 pm
Randomness is a concept of non-order or non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination. Randomness has somewhat disparate meanings as used in several different fields. It also has common meanings which may have loose connections with some of those more definite meanings. The Oxford English Dictionary defines "random" thus:

Having no definite aim or purpose; not sent or guided in a particular direction; made, done, occurring, etc., without method or conscious choice; haphazard.

Also, in statistics, as:

Governed by or involving equal chances for each of the actual or hypothetical members of a population; (also) produced or obtained by such a process, and therefore unpredictable in detail.

Closely connected, therefore, with the concepts of chance, probability, and information entropy, randomness implies a lack of predictability. More formally, in statistics, a random process is a repeating process whose outcomes follow no describable deterministic pattern, but follow a probability distribution, such that the relative probability of the occurrence of each outcome can be approximated or calculated. For example, the rolling of a fair six-sided die in neutral conditions may be said to produce random results, because one cannot compute, before a roll, what number will show up. However, the probability of rolling any one of the six rollable numbers can be calculated, assuming that each is equally likely.

The term is often used in statistics to signify well-defined statistical properties, such as a lack of bias or correlation. Monte Carlo Methods, which rely on random input, are important techniques in science, as, for instance, in computational science.[1] Random selection is an official method to resolve tied elections in some jurisdictions[2] and is even an ancient method of divination, as in tarot, the I Ching, and bibliomancy. Its use in politics is very old, as office holders in Ancient Athens were chosen by lot, there being no voting.

Contents [hide]
1 History
2 Randomness in science
2.1 In the physical sciences
2.2 In biology
2.3 In mathematics
2.4 In information science
2.5 In finance
2.6 Randomness versus unpredictability
3 Randomness and religion
4 Applications and use of randomness
4.1 Generating randomness
4.2 Randomness measures and tests
4.3 Links related to generating randomness
5 Misconceptions/logical fallacies
5.1 A number is "due"
5.2 A number is "cursed" or "blessed"
6 Books
7 See also
8 References
9 External links

History
Main article: History of randomness

Ancient fresco of dice players in Pompei.In ancient history, the concepts of chance and randomness were intertwined with that of fate. Many ancient peoples threw dice to determine fate, and this later evolved into games of chance. Most ancient cultures used various methods of divination to attempt to circumvent randomness and fate.[3][4]

The Chinese were perhaps the earliest people to formalize odds and chance 3,000 years ago. The Greek philosophers discussed randomness at length, but only in non-quantitative forms. It was only in the sixteenth century that Italian mathematicians began to formalize the odds associated with various games of chance. The invention of the calculus had a positive impact on the formal study of randomness. In the 1888 edition of his book The Logic of Chance John Venn wrote a chapter on "The conception of randomness" which included his view of the randomness of the digits of the number Pi by using them to construct a random walk in two dimensions.[5]

The early part of the twentieth century saw a rapid growth in the formal analysis of randomness, as various approaches for a mathematical foundations of probability were introduced. In the mid to late twentieth century ideas of algorithmic information theory introduced new dimensions to the field via the concept of algorithmic randomness.

Although randomness had often been viewed as an obstacle and a nuisance for many centuries, in the twentieth century computer scientists computer scientist began to realize that the deliberate introduction of randomness into computations can be an effective tool for designing better algorithms. In some cases such randomized algorithms outperform the best deterministic methods.

Randomness in science
Many scientific fields are concerned with randomness:

Algorithmic probability
Chaos theory
Cryptography
Game theory
Information theory
Pattern recognition
Probability theory
Quantum mechanics
Statistics
Statistical mechanics
In the physical sciences
In the 19th century, scientists used the idea of random motions of molecules in the development of statistical mechanics in order to explain phenomena in thermodynamics and the properties of gases.

According to several standard interpretations of quantum mechanics, microscopic phenomena are objectively random[citation needed]. That is, in an experiment where all causally relevant parameters are controlled, there will still be some aspects of the outcome which vary randomly. An example of such an experiment is placing a single unstable atom in a controlled environment; it cannot be predicted how long it will take for the atom to decay; only the probability of decay within a given time can be calculated.[6] Thus, quantum mechanics does not specify the outcome of individual experiments but only the probabilities. Hidden variable theories are inconsistent with the view that nature contains irreducible randomness: such theories posit that in the processes that appear random, properties with a certain statistical distribution are somehow at work "behind the scenes" determining the outcome in each case.

In biology
The modern evolutionary synthesis ascribes the observed diversity of life to natural selection, in which some random genetic mutations are retained in the gene pool due to the non-random improved chance for survival and reproduction that those mutated genes confer on individuals who possess them.

The characteristics of an organism arise to some extent deterministically (e.g., under the influence of genes and the environment) and to some extent randomly. For example, the density of freckles that appear on a person's skin is controlled by genes and exposure to light; whereas the exact location of individual freckles seems to be random.[7]

Randomness is important if an animal is to behave in a way that is unpredictable to others. For instance, insects in flight tend to move about with random changes in direction, making it difficult for pursuing predators to predict their trajectories.

In mathematics
The mathematical theory of probability arose from attempts to formulate mathematical descriptions of chance events, originally in the context of gambling, but later in connection with physics. Statistics is used to infer the underlying probability distribution of a collection of empirical observations. For the purposes of simulation, it is necessary to have a large supply of random numbers or means to generate them on demand.

Algorithmic information theory studies, among other topics, what constitutes a random sequence. The central idea is that a string of bits is random if and only if it is shorter than any computer program that can produce that string (Kolmogorov randomness)—this means that random strings are those that cannot be compressed. Pioneers of this field include Andrey Kolmogorov and his student Per Martin-Löf, Ray Solomonoff, and Gregory Chaitin.

In mathematics, there must be an infinite expansion of information for randomness to exist. This can best be seen with an example. Given a random sequence of three-bit numbers, each number can have only eight possible values:

000, 001, 010, 011, 100, 101, 110, 111
Therefore, as the random sequence progresses, it must recycle through the values it previously used. In order to increase the information space, another bit may be added to each possible number, giving 16 possible values from which to pick a random number. It could be said that the random four-bit number sequence is more random than the three-bit one. This suggests that in order to have true randomness, there must be an infinite expansion of the information space.

Randomness is said to occur in numbers such as log (2) and Pi. The decimal digits of Pi constitute an infinite sequence and "never repeat in a cyclical fashion". Numbers like pi are also thought to be normal, which means that their digits are random in a certain statistical sense.

Pi certainly seems to behave this way. In the first six billion decimal places of pi, each of the digits from 0 through 9 shows up about six hundred million times. Yet such results, conceivably accidental, do not prove normality even in base 10, much less normality in other number bases.[8]

In information science
In information science, irrelevant or meaningless data is considered to be noise. Noise consists of a large number of transient disturbances with a statistically randomized time distribution.

In communication theory, randomness in a signal is called "noise" and is opposed to that component of its variation that is causally attributable to the source, the signal.

In finance
The random walk hypothesis considers that asset prices in an organized market evolve at random.

Other so-called random factors intervene in trends and patterns to do with supply-and-demand distributions. As well as this, the random factor of the environment itself results in fluctuations in stock and broker markets.

Randomness versus unpredictability
Randomness, as opposed to unpredictability, is held to be an objective property - determinists believe it is an objective fact that randomness does not in fact exist. Also, what appears random to one observer may not appear random to another. Consider two observers of a sequence of bits, when only one of whom has the cryptographic key needed to turn the sequence of bits into a readable message. For that observer the message is not random, but it is unpredictable for the other.

One of the intriguing aspects of random processes is that it is hard to know whether a process is truly random. An observer may suspect that there is some "key" that unlocks the message. This is one of the foundations of superstition, and is also a motivation for discovery in science and mathematics.

Under the cosmological hypothesis of determinism, there is no randomness in the universe, only unpredictability, since there is only one possible outcome to all events in the universe. A follower of the narrow frequency interpretation of probability could assert that no event can be said to have probability, since there is only one universal outcome. On the other hand, under the rival Bayesian interpretation of probability there is no objection to the use of probabilities in order to represent a lack of complete knowledge of the outcomes.

Some mathematically defined sequences, such as the decimals of pi mentioned above, exhibit some of the same characteristics as random sequences, but because they are generated by a describable mechanism, they are called pseudorandom. To an observer who does not know the mechanism, a pseudorandom sequence is unpredictable.

Chaotic systems are unpredictable in practice due to their extreme sensitivity to initial conditions. Whether or not they are unpredictable in terms of computability theory is a subject of current research. At least in some disciplines of computability theory, the notion of randomness is identified with computational unpredictability.

Individual events that are random may still be precisely described en masse, usually in terms of probability or expected value. For instance, quantum mechanics allows a very precise calculation of the half-lives of atoms even though the process of atomic decay is random. More simply, although a single toss of a fair coin cannot be predicted, its general behavior can be described by saying that if a large number of tosses are made, roughly half of them will show up heads. Ohm's law and the kinetic theory of gases are non-random macroscopic phenomena that are assumed to be random at the microscopic level.

Randomness and religion
Some theologians have attempted to resolve the apparent contradiction between an omniscient deity, or a first cause, and free will using randomness. Discordians have a strong belief in randomness and unpredictability. Buddhist philosophy states that any event is the result of previous events (karma), and as such, there is no such thing as a random event or a first event.

Martin Luther, the forefather of Protestantism, believed that there was nothing random based on his understanding of the Bible. As an outcome of his understanding of randomness, he strongly felt that free will was limited to low-level decision making by humans. Therefore, when someone sins against another, decision making is only limited to how one responds, preferably through forgiveness and loving actions. He believed, based on Biblical scripture, that humans cannot will themselves faith, salvation, sanctification, or other gifts from God. Additionally, the best people could do, according to his understanding, was not sin, but they fall short, and free will cannot achieve this objective. Thus, in his view, absolute free will and unbounded randomness are severely limited to the point that behaviors may even be patterned or ordered and not random. This is a point emphasized by the field of behavioral psychology.

These notions and more in Christianity often lend to a highly deterministic worldview and that the concept of random events is not possible. Especially, if purpose is part of this universe, then randomness, by definition, is not possible. This is also one of the rationales for religious opposition to evolution, where, according to theory, (non-random) selection is applied to the results of random genetic variation.

Donald Knuth, a Stanford computer scientist and Christian commentator, remarks that he finds pseudorandom numbers useful and applies them with purpose. He then extends this thought to God who may use randomness with purpose to allow free will to certain degrees. Knuth believes that God is interested in people's decisions and limited free will allows a certain degree of decision making. Knuth, based on his understanding of quantum computing and entanglement, comments that God exerts dynamic control over the world without violating any laws of physics, suggesting that what appears to be random to humans may not, in fact, be so random.[9]

C. S. Lewis, a 20th-century Christian philosopher, discussed free will at length. On the matter of human will, Lewis wrote: "God willed the free will of men and angels in spite of His knowledge that it could lead in some cases to sin and thence to suffering: i.e., He thought freedom worth creating even at that price." In his radio broadcast, Lewis indicated that God "gave [humans] free will. He gave them free will because a world of mere automata could never love..."

In some contexts, procedures that are commonly perceived as randomizers—drawing lots or the like —are used for divination, e.g., to reveal the will of the gods; see e.g. Cleromancy.

Applications and use of randomness
Main article: Applications of randomness
In most of its mathematical, political, social and religious use, randomness is used for its innate "fairness" and lack of bias.

Political: Greek Democracy was based on the concept of isonomia (equality of political rights) and used complex allotment machines to ensure that the positions on the ruling committees that ran Athens were fairly allocated. Allotment is now restricted to selecting jurors in Anglo-Saxon legal systems and in situations where "fairness" is approximated by randomization, such as selecting jurors and military draft lotteries.

Social: Random numbers were first investigated in the context of gambling, and many randomizing devices, such as dice, shuffling playing cards, and roulette wheels, were first developed for use in gambling. The ability to produce random numbers fairly is vital to electronic gambling, and, as such, the methods used to create them are usually regulated by government Gaming Control Boards. Random drawings are also used to determine lottery winners. Throughout history, randomness has been used for games of chance and to select out individuals for an unwanted task in a fair way (see drawing straws).

Sports: Some sports, including American Football, use coin tosses to randomly select starting conditions for games or seed tied teams for postseason play. The National Basketball Association uses a weighted lottery to order teams in its draft.

Mathematical: Random numbers are also used where their use is mathematically important, such as sampling for opinion polls and for statistical sampling in quality control systems. Computational solutions for some types of problems use random numbers extensively, such as in the Monte Carlo method and in genetic algorithms.

Medicine: Random allocation of a clinical intervention is used to reduce bias in controlled trials (e.g., randomized controlled trials).

Religious: Although not intended to be random, various forms of divination such as cleromancy see what appears to be a random event as a means for a divine being to communicate their will. (See also Free will and Determinism).

Generating randomness
Main article: Random number generation

The ball in a roulette can be used as a source of apparent randomness, because its behavior is very sensitive to the initial conditions.It is generally accepted that there exist three mechanisms responsible for (apparently) random behavior in systems:

1.Randomness coming from the environment (for example, Brownian motion, but also hardware random number generators)
2.Randomness coming from the initial conditions. This aspect is studied by chaos theory and is observed in systems whose behavior is very sensitive to small variations in initial conditions (such as pachinko machines, dice ...).
3.Randomness intrinsically generated by the system. This is also called pseudorandomness and is the kind used in pseudo-random number generators. There are many algorithms (based on arithmetics or cellular automaton) to generate pseudorandom numbers. The behavior of the system can be determined by knowing the seed state and the algorithm used. These methods are quicker than getting "true" randomness from the environment.
The many applications of randomness have led to many different methods for generating random data. These methods may vary as to how unpredictable or statistically random they are, and how quickly they can generate random numbers.

Before the advent of computational random number generators, generating large amounts of sufficiently random numbers (important in statistics) required a lot of work. Results would sometimes be collected and distributed as random number tables.

Randomness measures and tests
There are many practical measures of randomness for a binary sequence. These include measures based on frequency, discrete transforms, and complexity, or a mixture of these. These include tests by Kak, Phillips, Yuen, Hopkins, Beth and Dai, Mund, and Marsaglia and Zaman.[10]

Links related to generating randomness
Hardware random number generator
Entropy (computing)
Information entropy
Probability theory
Pseudorandomness
Pseudorandom number generator
Random number
Random sequence
Random variable
Randomization
Stochastic process
White noise
Misconceptions/logical fallacies
Main article: Gambler's fallacy
Popular perceptions of randomness are frequently wrong, based on logical fallacies. The following is an attempt to identify the source of such fallacies and correct the logical errors.

A number is "due"
This argument is that "in a random selection of numbers, since all numbers will eventually appear, those that have not come up yet are 'due', and thus more likely to come up soon." This logic is only correct if applied to a system where numbers that come up are removed from the system, such as when playing cards are drawn and not returned to the deck. In this case, once a jack is removed from the deck, the next draw is less likely to be a jack and more likely to be some other card. However, if the jack is returned to the deck, and the deck is thoroughly reshuffled, a jack is as likely to be drawn as any other card. The same applies in any other process where objects are selected independently, and none are removed after each event, such as the roll of a die, a coin toss, or most lottery number selection schemes. Truly random processes such as these do not have memory, making it impossible for past outcomes to affect future outcomes.

A number is "cursed" or "blessed"
See also: Benford's law
In a random sequence of numbers, a number may be said to be cursed because it has come up less often in the past, and so it is thought that it will occur less often in the future. A number may be assumed to be blessed because it has occurred more often than others in the past, and so it is thought to be likely to come up more often in the future. This logic is valid only if the randomisation is biased, for example with a loaded die. If the die is fair, then previous rolls give no indication of future events.

In nature, events rarely occur with perfectly equal frequency. So observing outcomes to determine which events are likely to have a higher probability, makes sense. It is fallacious to apply this logic to systems which are designed so that all outcomes are equally likely, such as shuffled cards, dice and roulette wheels.

Books
Randomness by Deborah J. Bennett. Harvard University Press, 1998. ISBN 0-674-10745-4.
Random Measures, 4th ed. by Olav Kallenberg. Academic Press, New York, London; Akademie-Verlag, Berlin, 1986. MR0854102.
The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 3rd ed. by Donald E. Knuth. Reading, MA: Addison-Wesley, 1997. ISBN 0-201-89684-2.
Fooled by Randomness, 2nd ed. by Nassim Nicholas Taleb. Thomson Texere, 2004. ISBN 1-58799-190-X.
Exploring Randomness by Gregory Chaitin. Springer-Verlag London, 2001. ISBN 1-85233-417-7.
Random by Kenneth Chan includes a "Random Scale" for grading the level of randomness.
See also
Wikiversity has learning materials about Random

Aleatory
Frequency probability
Chaitin's constant
Probability interpretations
Nonlinear system
References
1.^ Third Workshop on Monte Carlo Methods, Jun Liu, Professor of Statistics, Harvard University
2.^ Municipal Elections Act (Ontario, Canada) 1996, c. 32, Sched., s. 62 (3) : "If the recount indicates that two or more candidates who cannot both or all be declared elected to an office have received the same number of votes, the clerk shall choose the successful candidate or candidates by lot."
3.^ Handbook to life in ancient Rome by Lesley Adkins 1998 ISBN 0195123328 page 279
4.^ Religions of the ancient world by Sarah Iles Johnston 2004 ISBN 0674015177 page 370
5.^ Annotated readings in the history of statistics by Herbert Aron David, 2001 ISBN 0387988440 page 115. Note that the 1866 edition of Venn's book (on Google books) does not include this chapter.
6.^ "Each nucleus decays spontaneously, at random, in accordance with the blind workings of chance". Q for Quantum, John Gribbin
7.^ Breathnach, A. S. (1982). "A long-term hypopigmentary effect of thorium-X on freckled skin". British Journal of Dermatology 106 (1): 19–25. doi:10.1111/j.1365-2133.1982.tb00897.x. "The distribution of freckles seems to be entirely random, and not associated with any other obviously punctuate anatomical or physiological feature of skin.".
8.^ Are the digits of pi random? researcher may hold the key.
9.^ Donald Knuth, "Things A Computer Scientist Rarely Talks About", Pg 185, 190-191, CSLI
10.^ Terry Ritter, Randomness tests: a literature survey. http://www.ciphersbyritter.com/RES/RANDTEST.HTM
External links
Look up randomness in Wiktionary, the free dictionary.
Wikiquote has a collection of quotations related to: Randomness

An 8 foot tall Probability Machine (named Sir Francis) comparing stock market returns to the randomness of the beans dropping through the quincunx pattern. from Index Funds Advisors IFA.com
QuantumLab Quantum random number generator with single photons as interactive experiment.
Random.org generates random numbers using atmospheric noises (see also Random.org).
HotBits generates random numbers from radioactive decay.
QRBG Quantum Random Bit Generator
Chaitin: Randomness and Mathematical Proof
A Pseudorandom Number Sequence Test Program (Public Domain)
Dictionary of the History of Ideas: Chance
Philosophy: Free Will vs. Determinism
RAHM Nation Institute
History of randomness definitions, in Stephen Wolfram's A New Kind of Science
Computing a Glimpse of Randomness
Retrieved from "http://en.wikipedia.org/wiki/Randomness"
Categories: Cryptography | Probability and statistics | Randomness
Hidden categories: Wikipedia indefinitely semi-protected pages | Articles needing cleanup from March 2010 | All pages needing cleanup | Articles needing additional references from March 2010 | All articles needing additional references | All articles with unsourced statements | Articles with unsourced statements from February 2009Personal tools
New featuresLog in / create accountNamespaces
ArticleDiscussionVariantsViews
ReadView sourceView historyActions
Search

SearchNavigation
Main pageContentsFeatured contentCurrent eventsRandom articleInteraction
About WikipediaCommunity portalRecent changesContact WikipediaDonate to WikipediaHelpToolbox
What links hereRelated changesUpload fileSpecial pagesPermanent linkCite this page
Print/export
Create a bookDownload as PDFPrintable version
Languages
العربيةCatalàČeskyDanskDeutschEspañolEsperantoفارسیFrançais한국어IdoItalianoעבריתLatinaNederlands日本語PolskiPortuguêsРусскийSimple EnglishSlovenčinaSvenska中文This page was last modified on 8 May 2010 at 02:51.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Contact us
twisted twisted twisted wikipedia entry on randomness. twisted twisted  

HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200

HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200
PostPosted: Tue May 25, 2010 4:20 pm
Bumpity bump bump mwahahahaha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama dramallama  
PostPosted: Tue May 25, 2010 4:23 pm
bump  

Slendy Tree


HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200
PostPosted: Tue May 25, 2010 4:27 pm
Bienvenue sur Wikipédia
Le projet d’encyclopédie libre que vous pouvez améliorer 952 021 articles en français
Version pour appareil mobile
Culture — Géographie — Histoire — Sciences — Société — Technologies
Liste des portails thématiques





Lumière sur
Paolo Bettini est un coureur cycliste italien né le 1er avril 1974 à Cecina en Toscane, professionnel de 1997 à 2008. Considéré comme l’un des meilleurs spécialistes des classiques durant les années 2000, il a notamment remporté Milan-San Remo, deux fois Liège-Bastogne-Liège et le Tour de Lombardie. Il est le seul coureur à avoir remporté trois fois la Coupe du monde, de 2002 à 2004, et a également été champion olympique à Athènes en 2004 et deux fois champion du monde en 2006 et 2007.

Commençant sa carrière comme équipier de Michele Bartoli, un des principaux spécialistes des classiques de la fin des années 1990, il profite de la blessure de ce dernier, en 2000, pour remporter une première fois la doyenne des classiques, Liège-Bastogne-Liège. À partir de cette période, les relations entre l’élève et le maître s’enveniment, et leur rivalité culmine à la fin de la saison 2001, lorsque Bartoli refuse de servir Bettini lors des championnats du monde et quitte l’équipe Mapei.

Au cours des trois années suivantes, Bettini s’affirme comme le meilleur coureur de classiques au monde, remportant notamment une nouvelle fois Liège-Bastogne-Liège, puis Milan-San Remo. Il gagne les trois dernières éditions de la Coupe du monde, et devient en 2003 le seul coureur à en avoir remporté trois manches la même année. En 2004, il remporte le titre de champion olympique.

À partir de 2005, Bettini, plus souvent blessé, bénéficiant d’un moindre soutien de son équipe Quick Step dévouée à Tom Boonen, obtient des résultats moins réguliers, mais s’illustre par des exploits ponctuels et parfois spectaculaires, notamment en fin de saison. En trois ans, il remporte ainsi deux fois le championnat du monde et deux fois le Tour de Lombardie, avant d’annoncer sa retraite en 2008, à l’occasion des championnats du monde. Parmi les courses d’un jour majeures, ne manquent à son palmarès que les deux principales classiques flandriennes, le Tour des Flandres et Paris-Roubaix, auquel il n’a jamais participé.

Lire la suite
Contenus de qualité • Bons contenus • Sélection • Programme


Actualités et événements
Événements en cours : Crise financière · Épidémie de méningite en Afrique de l’Ouest · Offensive d'Orakzai · Exposition universelle · Marée noire dans le golfe du Mexique · Manifestations en Thaïlande · Tournoi de tennis de Roland-Garros
--------------------------------------------------------------------------------
23 mai : la palme d'or du festival de Cannes est décernée à Lung Boonmee raluek chat du réalisateur thaïlandais Apichatpong Weerasethakul (photo).
22 mai : en République dominicaine, le Parti de la libération dominicaine remporte les élections générales.
22 mai : l’Inter Milan remporte la finale de la Ligue des champions de l’UEFA face au Bayern Munich et le Stade toulousain celle de la Coupe d'Europe de rugby contre le Biarritz olympique.
22 mai : le vol 812 Air India Express s’écrase à Mangalore, dans le sud de l’Inde, faisant 158 victimes sur les 166 passagers et membres d’équipage.
Mai 2010 • Éphéméride du jour • Wikinews • Modifier


Le saviez-vous ?
La comtesse de Ségur (portrait), qui publie son premier roman à l'âge de 58 ans, est un exemple de vocation littéraire tardive.
Le groupe de L’Annonciation de Francesco Mochi (160 cool est considéré comme l’élément fondateur du style baroque en sculpture.
Le nom de la ville de Boulogne Sur Mer, en Argentine, est un hommage à la ville française du même nom, où mourut le général José de San Martín, héros de l’indépendance du pays.
La porte de l’Inde, à New Delhi, est un monument élevé à la mémoire des soldats indiens morts durant la Première Guerre mondiale.
Archives • Modifier


Image du jour


La place du Plébiscite et la tour de l'Horloge de Martina Franca dans les Pouilles (Italie).
(définition réelle 2 800 × 2 294 – obtenir en poster)

Archives • Voir les images
Images de qualité sur Wikimédia Commons
Présentation
Wikipédia est un projet d’encyclopédie collective établie sur Internet, universelle, multilingue et fonctionnant sur le principe du wiki. Wikipédia a pour objectif d’offrir un contenu librement réutilisable, neutre et vérifiable, que chacun peut éditer et améliorer.
Le cadre du projet est défini par des principes fondateurs. Son contenu est sous licence Creative Commons by-sa et peut être copié et réutilisé sous la même licence – même à des fins commerciales – à condition d'en respecter les conditions.

Actuellement, 683 articles de qualité et 967 bons articles répondent aux critères établis par la communauté et font honneur à l’encyclopédie.

À propos de Wikipédia • Guide sur Wikipédia
Participation
Chacun peut publier immédiatement du contenu en ligne, à condition de respecter les règles essentielles établies par la communauté ; par exemple, la vérifiabilité du contenu ou l’admissibilité des articles.
De nombreuses pages d’aide sont à votre disposition, notamment pour créer un article, modifier un article ou insérer une image. N’hésitez pas à poser une question.

Accueil des nouveaux arrivants • L’essentiel pour contribuer
Communauté
838 625 personnes ont créé un compte sur Wikipédia, et, parmi elles, 16 522 ont participé durant le dernier mois. Tous les rédacteurs des articles de Wikipédia sont bénévoles ; ils constituent une communauté collaborative, sans dirigeant, où les membres coordonnent leurs efforts au sein des projets thématiques et de divers espaces de discussion.
Les débats et remarques sur les articles sont bienvenus. Les pages de discussion servent à centraliser les réflexions et les évaluations permettant d’améliorer les articles.

Accueil de la communauté
Projets frères
Meta-Wiki
Coordination de tous les projets
Wiktionnaire
Dictionnaire universel
Wikinews
Actualités libres
Wikibooks
Livres et textes didactiques
Wikiquote
Recueil de citations
Wikisource
Bibliothèque universelle
Wikispecies
Inventaire du vivant
Wikiversité
Communauté pédagogique libre
Wikimedia Commons
Base de données multimédia


Wikipédia ne garantit pas le contenu mis en ligne.
La Wikimedia Foundation étant un hébergeur, elle ne saurait être tenue responsable des erreurs éventuelles contenues sur ce site.
Chaque rédacteur est responsable de ses contributions.

Contact
Ce document provient de « http://fr.wikipedia.org/wiki/Wikipédia:Accueil_principal ».Affichages
AccueilDiscussionVoir le texte sourcehistoriqueOutils personnels
Essayer la bêtaCréer un compte ou se connecterRechercher
Navigation
Accueil
Portails thématiques
Index alphabétique
Un article au hasard
Contacter Wikipédia
Contribuer
Aide
Communauté
Modifications récentes
Accueil des nouveaux arrivants
Faire un don
Imprimer / exporter
Créer un livre
Télécharger comme PDF
Version imprimable
Boîte à outils
Pages liées
Suivi des pages liées
Importer un fichier
Pages spéciales
Adresse de cette version
Autres langues
Català
Česky
Deutsch
English
Español
Suomi
Magyar
Italiano
日本語
한국어
Nederlands
Polski
Português
‪Norsk (bokmål)‬
Română
Русский
Svenska
Türkçe
Українська
中文
Liste complète
Dernière modification de cette page le 15 avril 2010 à 14:07.
Droit d'auteur : les textes sont disponibles sous licence Creative Commons paternité partage à l’identique ; d’autres conditions peuvent s’appliquer. Voyez les conditions d’utilisation pour plus de détails, ainsi que les crédits graphiques.
Wikipedia® est une marque déposée de la Wikimedia Foundation, Inc., organisation de bienfaisance régie par le paragraphe 501(c)(3) du code fiscal des États-Unis.
Politique de confidentialitéÀ propos de WikipédiaAvertissements
French Wikipedia twisted twisted twisted  
PostPosted: Tue May 25, 2010 4:28 pm
dramallama
dramallama dramallama
dramallama dramallama dramallama
dramallama dramallama dramallama dramallama
dramallama dramallama dramallama dramallama dramallama

BUMP  

HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200

x--w a s a b ii--x

7,800 Points
  • Bunny Spotter 50
  • Bunny Hunter 100
  • Bunny Hoarder 150
PostPosted: Tue May 25, 2010 4:29 pm
huh?  
PostPosted: Tue May 25, 2010 4:29 pm
heart dramallama heart dramallama heart dramallama ninja heart dramallama heart dramallama
 

HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200

x--w a s a b ii--x

7,800 Points
  • Bunny Spotter 50
  • Bunny Hunter 100
  • Bunny Hoarder 150
PostPosted: Tue May 25, 2010 4:30 pm
yawn  
PostPosted: Tue May 25, 2010 4:31 pm
CHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE  

HazyKoala

Lonely Sex Symbol

8,000 Points
  • Invisibility 100
  • Noob wrangler 100
  • Clambake 200

x--w a s a b ii--x

7,800 Points
  • Bunny Spotter 50
  • Bunny Hunter 100
  • Bunny Hoarder 150
PostPosted: Tue May 25, 2010 4:31 pm
tyra show=awesomeness  
PostPosted: Tue May 25, 2010 4:32 pm
bump  

x--w a s a b ii--x

7,800 Points
  • Bunny Spotter 50
  • Bunny Hunter 100
  • Bunny Hoarder 150

x--w a s a b ii--x

7,800 Points
  • Bunny Spotter 50
  • Bunny Hunter 100
  • Bunny Hoarder 150
PostPosted: Tue May 25, 2010 4:32 pm
bump  
Reply
[6]~ Free Give ~

Goto Page: [] [<<] [<] 1 2 3 ... 21 22 23 24 25 26 ... 44 45 46 47 [>] [>>] [»|]
 
Manage Your Items
Other Stuff
Get GCash
Offers
Get Items
More Items
Where Everyone Hangs Out
Other Community Areas
Virtual Spaces
Fun Stuff
Gaia's Games
Mini-Games
Play with GCash
Play with Platinum